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Abstract

In this paper, we present an extension of goal-oriented error estimation and adap-
tation to the simulation of multi-scale problems of molecular statics. Computable
error estimates for the quasicontinuum method are developed with respect to spe-
cific quantities of interest and an adaptive strategy based upon these estimates is
proposed for error control. The theoretical results are illustrated on a nanoindenta-
tion problem in which the quantity of interest is the force acting on the indenter.
The promising capability of such error estimates and adaptive procedure for the
solution of multi-scale problems is demonstrated on numerical examples.
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1 Introduction

Computational methods for the study of multi-scale phenomena have become
a prominent area of research in computational science. Indeed, computing ca-
pabilities have reached a point where atomistic simulations using quantum
mechanical, atomistic potential, and mesoscopic and continuum models can
be coupled concurrently to study physical problems of an inherent multi-scale
nature [2,8]. Development of such methods is of particular interest for the
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study of the mechanics of materials including fracture phenomena, nanoin-
dentation, atomic friction, etc., to name just a few [19,1]. However, many of
the existing methods to date, to the best knowledge of the authors, lack some
analysis of the error incurred by coupling such models. Furthermore, conver-
gence analysis and comparison studies of these methods seem to be scarce and
not fully addressed in the literature. In this paper, we present an application
of goal-oriented error estimation and adaptive modeling to a model nanoin-
dentation problem to partially address some of these issues. These ideas draw
upon work in [11] where error estimates for quantities of interest are derived.
Ideas of goal-oriented adaptive modeling come from [13] and references therein.
This goal-oriented modeling methodology has been successfully applied to the
study of heterogeneous elastostatics and elastodynamics, random heteroge-
neous materials, as well as the study of linear lattice models [14,16,12]. See
also [13].

In this study, an atomistic model based upon potentials of the embedded-
atom method (EAM) is used as a base model to simulate the nanoindentation
of a thin aluminum film [4,5]. The target problem was also studied in [19].
Surrogate models are generated using the quasicontinuum method (QCM)
[20,18]. Error estimates in a quantity of interest are derived and an adaptive
modeling scheme is implemented in the freely available QCM code [10]. A brief
summary of some of our results given in this paper were reported in the survey
article [13]. Here we give full details of an analysis of multi-scale modeling in
which the coarse-scale modeling is implemented using the QCM.

The paper is organized as follows: following the introduction, we present in
Section 2 the base model for molecular statics problems, derive a surrogate
model based on the quasicontinuum method, and describe a practical example
that deals with the nanoindentation of a thin film aluminum crystal. Section 3
is devoted to the derivation of error estimates with respect to quantities of in-
terest. These estimates approximate the modeling error between solutions of
the base and surrogate models. In Section 4, an adaptive strategy is proposed
for the control of the modeling error by subsequent enrichment of the surrogate
model. Performance of the error estimator and adaptive strategy is demon-
strated on the nanoindentation problem described in Section 2. We finally give
some concluding remarks in Section 5.

2 Molecular statics model

In this section, we consider the problem of determining static equilibrium
configurations of a regular lattice of N atoms. The base problem is obtained
by minimizing the potential energy of the system consisting of all atoms in
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the lattice. In many applications, N can be very large and the base problem
is often intractable. In order to reduce its complexity, we consider here the
use of an approximation method such as the quasicontinuum method (QCM)
[18–20]. In recent years, QCM has become a popular approach for constructing
surrogate problems that retain only a small number of active atoms during
the simulations. In that sense, QCM can be viewed as a model reduction
procedure.

2.1 The base problem. Let L be a regular lattice of N atoms in R
d, d = 2

or 3. The positions of the atoms are given in the reference configuration by the
vectors x̂i ∈ R

d, i = 1, . . . , N . When the lattice is subjected to a deformation
φ : R

d → R
d, the atoms move to the new positions

xi = φ(x̂i) = x̂i + ui, i = 1, . . . , N (1)

where ui is the displacement of atom i. We assume that the lattice in the
reference configuration covers the region Ω̄, where Ω is an open bounded set
of R

d with boundary ∂Ω. We also assume that the atoms lying on ∂Ω are all
ascribed essential boundary conditions in the form

ui = gi, ∀x̂i ∈ ∂Ω (2)

with gi ∈ R
d. Other boundary conditions will be considered in the nanoin-

dentation application. We deliberately choose to restrict ourselves to this case
in the presentation of the theoretical results as, otherwise, it would make the
exposition rather cumbersome without adding to the understanding of the
methodology. Let Na be the number of atoms inside the domain Ω and Nb the
number of atoms on ∂Ω such that N = Na + Nb. Henceforth, we shall use the
convention that the interior atoms be numbered from 1 to Na and the bound-
ary atoms from Na + 1 to N . We will consider the finite-dimensional vector
spaces V = (Rd)N and V0 = (Rd)Na. In what follows, we will conveniently
use the notation u = (u1, u2, . . . , uN ), u ∈ V , to refer to the displacements
of the collection of N atoms. Similarly, u ∈ V0 is the set of displacements
u = (u1, u2, . . . , uNa

).

Let a state of the system of N atoms be described by the displacements u ∈ V .
The total potential energy of the system is assumed to take the form

E(u) = −
N
∑

i=1

f i · ui +
N
∑

k=1

Ek(u) (3)

where f i is the external load applied to an atom i and Ek(u) is the energy
of atom k determined from inter-atomic potentials. Explicit description of Ek

will be given below.
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The goal of molecular statics is to find the equilibrium state u ∈ V that
minimizes the total potential energy of the system, i.e.

E(u) = inf
v ∈ V

vi = gi on ∂Ω

E(v) (4)

The constrained minimization problem is then equivalent to finding u ∈ V
such that:

N
∑

k=1

∂Ek

∂ui

(u) = f i, i = 1, . . . , Na (5)

ui = gi, i = Na + 1, . . . , N (6)

where ∂/∂ui is the gradient vector with respect to each component ul,i, l =
1, . . . , d of the displacement vector ui, i.e. ∂/∂ui = (∂/∂u1,i, . . . , ∂/∂ud,i).

A variational formulation of the above problem is obtained by multiplying the
Na equations in (5) by arbitrary vectors v ∈ V0 so that the problem reads

Find u ∈ V such that

B(u; v) = F (v), ∀v ∈ V0

ui = gi, i = Na + 1, . . . , N

(7)

where the semilinear form B(·; ·) and linear form F (·) are defined for any
u ∈ V and v ∈ V0 as

B(u; v) =
Na
∑

i=1

[

N
∑

k=1

∂Ek

∂ui

(u)

]

· vi

F (v) =
Na
∑

i=1

f i · vi

(8)

Note that Problem (7) is nonlinear in u and linear in v. We assume that there
exist solutions and that it can be solved by a quasi-Newton method (see [17]
for details).

2.2 The surrogate problem by the quasicontinuum method. We describe in
this section the main features of QCM. The reader is referred to [18,17,9]
for a detailed exposition. The objectives of the method can be summarized as
follows: (i) to dramatically reduce the number of degrees of freedom from N×d,
and (ii) to substantially reduce the cost in the calculation of the potential
energy by computing energies only at selected sites. In addition, the use of
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adaptive approaches for automatic selection of the degrees of freedom can
allow QCM to capture the critical deformations of the lattice in an efficient
manner.

The initial step of the method consists in choosing a set of R � N represen-
tative atoms, the so-called “repatoms”, and in approximating u ∈ V by the
reduced vector u0 ∈ W = (Rd)R. The displacements u0 represent the active
degrees of freedom of the system and the repatoms are conveniently identified
with the nodes of a finite element triangulation Ph of Ω. The displacements of
the (N − R) “slave” atoms are then interpolated from u0 by piecewise linear
polynomials defined on the triangular mesh. Let φr, r = 1, . . . , R, denote the
basis functions (the hat functions) associated with Ph and let uh be the finite
element vector function such that

uh(x̂) =
R
∑

r=1

u0,rφr(x̂), ∀x̂ ∈ Ω̄ (9)

u0 = (u0,1, u0,2, . . . , u0,R) ∈ W . The displacements of the N atoms in the
lattice can clearly be evaluated from u0 as

u0
i = uh(x̂i), i = 1, . . . , N (10)

so that u0 = (u0
1, u

0
2, . . . , u

0
N) ∈ V . This extension operator will be referred

to as π : W → V such that πu0 = u0. In a similar manner, defining Ra and
Rb as the number of repatoms lying in the interior of the lattice and on the
boundary ∂Ω, respectively, and letting W0 = (Rd)Ra, we also introduce the
extension operator π0 : W0 → V0. The reduced vector πu0 could be used to
approximate the total potential energy

E(πu0) = −
N
∑

i=1

f i · (πu0)i +
N
∑

k=1

Ek(πu0) (11)

but such a calculation would still be very prohibitive as all N atoms need to
be visited in order to sum up the atomic site energies.

The second step of the QCM is thus concerned with and efficient scheme to
approximate the total energy E(πu0). The main motivation here is to estimate
the potential energy by summing only over the repatoms such that

E(πu0) ≈ E0(u0) = −
R
∑

r=1

nr f0,r · u0,r +
R
∑

r=1

nrEr(u0) (12)

where nr is an appropriate weight function associated with repatom r so as to
account for all atoms in the lattice, i.e.

∑

r nr = N , and f0,r is the averaged
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external force acting on repatom r. In the QCM, the calculation of the energies
nrEr(u0) is done in one of two ways, depending upon whether a repatom is
considered either “local” or “nonlocal”. The attribute “local” refers here to the
fact that the energy at a point in the continuum depends on the deformation
at that point only and not on its surroundings. Let Rlc denote the number
of local repatoms and Rnl the number of nonlocal repatoms, R = Rlc + Rnl.
The atomistic energies are now separated into local and nonlocal contributions
such as:

R
∑

r=1

nrEr(u0) =
Rlc
∑

r=1

nrE
loc

r (u0) +
Rnl
∑

s=1

nsE
nl

s (u0) (13)

Note that if Rnl = 0, the method is called the local QCM, and if Rlc =
0, the nonlocal QCM. Otherwise, the method is referred to as the coupled
local/nonlocal QCM. We shall only consider the latter in what follows.

Local formulation: The local formulation makes use of the Cauchy-Born rule [7]
to compute the sites energies. The Cauchy-Born rule postulates that when a
crystal is subjected to a small linear displacement of its boundary, then all
interior atoms are deformed following this displacement. In particular, this
means that every atom in a region experiencing a uniform deformation gradi-
ent has the same energy. Since the QCM uses piecewise linear finite elements,
the deformation gradient is uniform within each element and the energy in an
element can be calculated by computing the energy of one atom only in the
deformed state. Then the energy E loc

r is given by:

nrE
loc

r (u0) =
K
∑

e=1

ne
r E(F e), nr =

K
∑

e=1

ne
r (14)

where E(F e) is the energy of a single atom under the deformation gradient
F e. Here K is the number of elements surrounding the repatom r and ne

r is
the number of atoms from nr that actually live in element e.

Nonlocal formulation: In this formulation, the energy is accurately approx-
imated by explicitly computing the energy of the nonlocal repatoms, i.e.
Enl

s (u0) = Es(u0). In other words, if Rlc = 0 and in the limit case where
every atom in the lattice is made a repatom, that is Rnl = N , then nr = 1,
r = 1, . . . , N , and the problem becomes equivalent to the base problem.

Remark 1 (Ghost forces) The coupling of nonlocal and local representative
atoms leads to spurious forces, so-called “ghost forces”, near interfaces of local
and nonlocal repatoms. The issue is that the energy calculated at a nonlocal
repatom may be influenced by the displacement of a local repatom nearby, while
the converse may not be true. Therefore the approximation of the energy by
the coupled local/nonlocal approach yields non-physical forces at the interface
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of the local and nonlocal regions. A solution to this issue has been devised by
adding corrective forces to balance ghost forces (see e.g. [17]).

Remark 2 (Local/nonlocal criterion) The selection of representative at-
oms as local or nonlocal is based upon the variation of the deformation gradient
on the atomic scale in the vicinity of the atoms. A repatom is made local if the
deformation is almost uniform, nonlocal if the deformation gradient is large.
In the QCM, the deformation gradients are compared element to element by
computing the differences between the eigenvalues of the right stretch tensor

U =
√

F T F in each element, F = ∇φ being the deformation gradient in the
elements.

Using the approximation (12) for the potential energy, the minimization prob-
lem for the QCM consists of finding u0 ∈ W such that

E0(u0) = min
v ∈ W

vi = gi on ∂Ω

E0(v) (15)

This can be rewritten in variational form as

Find u0 ∈ W such that

B0(u0; v) = F0(v), ∀v ∈ W0

u0,i = gi, i = Ra + 1, . . . , R

(16)

where the semilinear form B0(·; ·) and linear form F0(·) are now given by

B0(u; v) =
Ra
∑

i=1

[

R
∑

r=1

nr

∂Er

∂ui

(u)

]

· vi

F0(v) =
Ra
∑

i=1

ni f0,i · vi

(17)

Remark 3 (Adaptivity) In [9], it is proposed that an automatic mesh adap-
tion technique be used to add and remove representative atoms “on the fly”,
in order to capture the fine features during the simulation. The criterion for
adaptivity is based upon the derivation of an error indicator similar to that of
Zienkiewicz and Zhu [21] for the finite element method. The error indicator is
calculated over each element Ωe as

ηK =

√

1

|ΩK|
∫

ΩK

(F̄ − F ) : (F̄ − F )dx

where |ΩK | is the volume of element K, F (u0) the deformation gradient ob-
tained from the QC solution u0 (piecewise constant), and F̄ is a recovered
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Fig. 1. Nanoindentation of an aluminum crystal.

smooth deformation gradient obtained by a L2-projection of F (u0) onto the
finite element space (piecewise linear). In the adaptive strategy, the elements
that exceed a prescribed tolerance are marked for refinement. This adaptive
strategy will be used as is to compute the solution u0 and the “overkill” so-
lution of the problem. Our goal here is to propose an alternative method that
automatically adapts the solution process by controlling errors in quantities of
interest.

2.3 An application example. Numerical simulations to illustrate the perfor-
mance of the error estimator and adaptive strategy will be performed on the
nanoindentation problem suggested by Tadmor et al. [15,17,19]. This exam-
ple is actually provided as a model example accompanying the open source
software package [10].

In this example, a thin film of aluminum crystal is indented by a rigid rectan-
gular indenter, infinite in the out-of-plane direction, as depicted in Fig. 1. The
dimensions for the block of crystal are 2000 × 1000 A2 (A=Angström) in the
[111] and [1̄10] directions of the crystal. The crystal rests on a rigid support
so that homogeneous boundary conditions ui = 0 are prescribed for those
atoms i located at y = 0. The remaining boundary conditions are enforced as
follows: at x = 0 and x = 2000, homogeneous essential boundary conditions
are prescribed in the x- and z-direction while zero forces are prescribed in the
y-direction; these boundary conditions enforce symmetry across the planes.
The atoms in the y = 1000 plane (excluding the atoms under the indenter)
are prescribed zero forces. The indenter is moved downward by a succession
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of increments δl = 0.2 A so that the boundary conditions for the atoms i just
below the indenter are given by:

ui = (0,−s δl, 0), s = 1, . . . , 30 (18)

Quasistatic steps are then considered to solve for the displacements.

The site energies Ek(u) of each atom k of the aluminum crystal are modeled by
the Embedded Atom Method (EAM), see e.g. [4,6]. Briefly, the semi-empirical
potential energy for atom k is given by

Ek(u) = Fk(ρ̄k) − E
(2)
k (u), (19)

where Fk is interpreted as an electron-density dependent embedding energy,
ρ̄k is an averaged electron density at the position of atom k, and

E
(2)
k (u) =

1

2

∑

k 6=j

V
(2)
kj (rkj). (20)

Here V
(2)
kj is a pairwise potential between atoms k and j and rkj denotes the

interatomic distance

rkj =
√

((x̂k − x̂j) + (uk − uj)) · ((x̂k − x̂j) + (uk − uj)) (21)

Remark 4 (Cutoff functions) The quasicontinuum method employs a cut-

off function to approximate the interatomic potentials V
(2)
kj . Since the potential

decays rapidly with respect to the interatomic distance rkj, the potential only
includes atoms that lie within some short distance between each other.

The interatomic distances in the undeformed configuration of the crystal are
2.33 A in the x-direction. One (1̄, 1̄, 0) layer of the film contains about 1.3
million atoms [19]. Note that the lattice is two-dimensional, but that dis-
placements are allowed in three dimensions (constrained by periodicity in the
z-direction) and the energy is calculated based upon three-dimensional dis-
placements.

Rather than solving for the solution of the full base problem (7), an “overkill”
solution of the surrogate problem (16) is considered as the reference solution.
This solution hereafter will be referred to as the base model solution. This
base model solution involves a sufficiently high number of degrees of freedom
so that it is considered, for the purposes of this study, a highly accurate
approximation of u.

The refinement tolerances were set to 0.000075 for the base model solution and
to 0.075 for the QC solution (this value is recommended by the authors [10]).
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The meshes corresponding to these solutions are shown in Fig. 2. The vertical
displacements, at an early stage of the indentation process, and just before
dislocation nucleation, are shown in Figs. 3 and 4, respectively. In the early
stages, it appears that the displacements computed by the QC solution com-
pare well with the base model solution. However, at the dislocation nucleation,
the latter appears to be softer, allowing the slip plane to move more quickly
into the material.

For better comparison, we show in Fig. 5 the magnitude of the force exerted
by the crystal onto the indenter. This force represents a quantity of physical
interest as it clearly indicates the nucleation of the dislocation. Note that the
base model solution has been run only to load step 27 due to computational
cost. However, the QC solution has been displayed for the full 30 steps. The
QC solution seems to be stiffer, causing the dislocations to nucleate one load
step sooner than the base model solution as the critical force is reached more
quickly. Thus, although the displacements seem to compare well in the linear
region, small errors accumulate resulting in an inaccurate portrayal of the
mechanics of the lattice. Our goal in the next sections will be to establish
estimates of the error in the quasicontinuum solution with respect to this
quantity of interest and to control that error via an adaptive algorithm.

3 Error estimation

3.1 Errors and quantity of interest. The errors in the QC solution u0, with
respect to the solution of the base problem, arise from three sources: (i) use
of an iterative method to solve the nonlinear problem, (ii) reduction of the
number of degrees of freedom from N to R, and (iii) approximation of the
total potential energy by E0, as defined in (12) and (13).

The error due to the nonlinear solver is controlled at each iteration and is
assumed to be negligible compared to the other sources of error. This error
is sometimes referred to as the solution error. The second type of error is
analogous to discretization error in Galerkin approximations such as in the
finite element method. Here it can be regarded as a model reduction error.
Finally, the last source induces a so-called modeling error due to the modeling
of the energy using the coupled local/nonlocal QCM. In this work, we will
not differentiate the three types of errors and will provide for estimates of the
total error.

The next issue when dealing with a posteriori error estimation is the selection
of the error measure. Early works on the subject have concentrated on global
norms such as energy norms. More recently, methods have been developed
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Fig. 2. Finite element triangulation for the base model solution (top) and the QC
solution (bottom) at load step 15. The base model solution has 25484 atoms while
the QC solution has 445 atoms.
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Fig. 3. The base model solution (left) and the QC solution (right) at load step 15.
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Fig. 4. The base model solution (left) and the QC solution (right) at the beginning
of load step 27 and 26, respectively. The base model solution has 40554 atoms while
the QC solution has 492 atoms.
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Fig. 5. The force-displacement curve comparing the evolution of the base model
solution and the QC solution.

to construct error estimates with respect to quantities of physical interest. A
typical quantity of interest in the nanoindentation problem (see Section 2.3)
is the reaction force on the indenter. We choose here this force as the quantity
of interest for determining error estimates. Let the atoms in contact with the
lower surface of the indenter be numbered from 1 to M . Then the force can
be written as:

Q(u) = −
M
∑

i=1

f i · n (22)

where n is the outward unit normal vector to ∂Ω below the indenter. In terms
of the potential energies, we have:

Q(u) = −
M
∑

i=1

∂Ei

∂ui

(u) · n (23)
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We note that Q(u) is a nonlinear functional defined on the solution space V .
We also assume in the following that the meshes are constructed in such a
way that the M atoms under the indenter are representative atoms, and all
the forces are computed by the nonlocal approach.

The objective is then to estimate the error quantity

E = Q(u) − Q(πu0) (24)

where πu0 ∈ V is obtained from u0 by (10). To that end, we follow the
approach described in [11] and present the dual problem of the base model in
the next section.

3.2 The dual problem and error representation. The general approach to
obtain estimates of the error E makes use of the solution of the dual problem
associated with the base model (7):

Find p ∈ V0 such that

B′(u; v, p) = Q′(u; v), ∀v ∈ V0
(25)

where the derivatives are defined as

B′(u; v, p) = lim
θ→0

1

θ
[B(u + θv; p) − B(u; p)]

Q′(u; v) = lim
θ→0

1

θ
[Q(u + θv) − Q(u)]

(26)

In the molecular statics case, we have

B′(u; v, p) =
Na
∑

j=1

Na
∑

i=1

vj ·
[

N
∑

k=1

∂2Ek

∂uj∂ui

(u)

]

· pi

Q′(u; v) = −
Na
∑

j=1

vj ·
[

M
∑

i=1

∂2Ei

∂uj∂ui

(u) · n
]

(27)

However, since the dual solution depends on the exact solution u and that
the above problem may be intractable due to the large number of atoms, we
may use instead approximations of p. An approximation can be obtained by
solving the surrogate dual problem:

Find p0 ∈ W0 such that

B′
0(u0; v, p0) = Q′

0(u0; v), ∀v ∈ W0
(28)

13



and by extending p0 to the space V0 to obtain the vector π0p0 ∈ V0,

π0p0,i =
R
∑

r=1

p0,rφr(x̂i), i = 1, . . . , N (29)

The quantity of interest Q0 in (28) is defined for v ∈ W by Q0(v) = Q(πv).

In the following, we denote by e0 and ε0 the errors in πu0 and π0p0, i.e.

e0 = u − πu0 ∈ V

ε0 = p − π0p0 ∈ V0
(30)

We apply the results of [11] to derive the following theorem that provides for
a representation of the error in the quantity of interest:

Theorem 1 Let the semilinear form B(·; ·) in (7) belong to C3(V ) and let the
quantity of interest Q(·) as defined in (23) be in C3(V ). Let u ∈ V and p ∈ V0

be solutions of the base problems (7) and (25), respectively. Let (u0, p0) ∈
W × W0 be the solution pair of the surrogate problems and let (πu0, π0p0)
denote their extensions to the spaces V ×V0. Then the error in Q(u) produced
by πu0 is given by

E = Q(u) − Q(πu0) = R(πu0; p) + ∆(πu0, π0p0, e0, ε0) (31)

where R(πu0; v) is the residual functional,

R(πu0; v) = F (v) − B(πu0; v), v ∈ V0 (32)

and ∆ = ∆(πu0, π0p0, e0, ε0) is the remainder,

∆ =
1

2

∫ 1

0
{B′′(πu0 + se0; e0, e0, π0p0 + sε0)

− Q′′(πu0 + se0; e0, e0)}ds

+
1

2

∫ 1

0
{Q′′′(πu0 + se0; e0, e0) − 3B′′(πu0 + se0; e0, e0, ε0)

− B′′′(πu0 + se0; e0, e0, e0, π0p0 + sε0)}(s − 1)sds

(33)

Goal-oriented error estimators aim at estimating E by accurately approximat-
ing the quantity R(πu0; p) and neglecting the higher-order terms ∆. One such
approach is proposed in the next section.

3.3 The error estimator. We first rewrite the quantity R(πu0; p) in different
forms in order to lay down our motivations for the derivation of the error

14



estimator. Starting from the definition of the residual, it is clear that:

R(πu0; p) = F (πu0, p) − B(πu0; p)

=
Na
∑

i=1

f i · pi −
Na
∑

i=1

[

N
∑

k=1

∂Ek

∂ui

(πu0)

]

· pi

=
Na
∑

i=1

(

f i −
[

N
∑

k=1

∂Ek

∂ui

(πu0)

])

· pi

=
Na
∑

i=1

ri(πu0) · pi

(34)

where the residual vector r(πu0) ∈ V0 indicates how the forces acting on each
atom i fail to be equilibrated. We observe that the calculation of R(πu0; p)
may be cost prohibitive when the number of atoms N , or rather Na, is large. In
an effort to reduce the computational cost of the error estimator, it is desirable
to take into account only those contributions that are the most significant,
meaning that the number of atoms to be considered for the calculation of (34)
should range from Ra to Na.

Moreover, thanks to the linearity of the residual functional, the quantity
R(πu0; p) can be decomposed as:

R(πu0; p) = R(πu0; π0p0) + R(πu0; ε0) (35)

It is well known that the contribution R(πu0; π0p0) vanishes for Galerkin
approximations. In a similar manner here, this term fails to detect the model
reduction error. It follows that the solution p0 provides for a poor approxi-
mation of the dual solution p, in the sense that R(πu0; π0p0) approximates
R(πu0; p) poorly, and a better approximation should be obtained in a space
larger than W0.

We propose here to evaluate the residual and the dual solution on a mesh
which is finer than the mesh used for the evaluation of u0, but much coarser
than the mesh that would be obtained by considering all atoms as representive
atoms. Let P̃h denote such a partition of Ω̄ (we shall explain below how to
construct P̃h) and suppose that it contains a total number of Ñ nodes with Ña

interior nodes. We introduce the vector spaces Ṽ = (Rd)Ñ and Ṽ0 = (Rd)Ña

as well as the extension operators π̃ : V → Ṽ and π̃0 : V0 → Ṽ0. We can now
define a residual functional R̃ on Ṽ such that for any ũ ∈ Ṽ and ṽ ∈ Ṽ0

R̃(ũ; ṽ) =
Ña
∑

i=1

r̃i(ũ) · ṽi (36)

where the r̃i(ũ) are computed via the coupled local/nonlocal quasicontinuum
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approach. We will also consider the approximate dual problem:

Find p̃ ∈ Ṽ0 such that

B̃′(π̃u0; ṽ, p̃) = Q̃′(π̃u0; ṽ), ∀ṽ ∈ Ṽ0

(37)

with, for all ũ ∈ Ṽ and ṽ ∈ Ṽ0,

B̃(ũ; ṽ) =
Ña
∑

i=1





Ñ
∑

k=1

nk

∂Ek

∂ui

(ũ)



 · ṽi

Q̃(ũ) = −
M
∑

i=1

∂Ei

∂u,i

(ũ) · n
(38)

Note that B̃ is computed using the Ñ representative atoms in the partition
P̃h. We emphasize here that the approximation p̃ of p involves the same types
of errors as in u0, but that it also strongly depends on the accuracy of the
computed solution u0.

We now define the error estimator with respect to the quantity of interest, Q,
as the computable quantity

η = R̃(π̃u0; p̃) =
Ña
∑

i=1

r̃i(π̃u0) · p̃i (39)

and we show in the next section that η is a reasonable estimate of the error
E = Q(u) − Q0(u0) = Q(u) − Q(πu0). Finally, the finite element partition
P̃h, or enriched mesh, for the calculation of the dual approximation p̃ and the
residual r̃ is constructed using the adaptive technique described in Remark 3
using a smaller tolerance than 0.075. In order to assess the quality of the error
estimate, we will use the effectivity index defined as the ratio ζ = η/E .

3.4 Numerical experiments. We perform here a few numerical experiments
using the same setting as in Section 2.3 in order to study the performance of the
error estimator. We first investigate the influence of approximating the dual
solution in the enriched space Ṽ rather than in the space V0. Close-up views
of the meshes (QCM and enriched meshes) corresponding to these spaces are
shown in Fig. 6. As expected, the error estimator performs very poorly when
the dual solution is approximated on the QCM mesh. This is clearly indicated
in Fig. 7 where it is shown that the error estimator detects very little error at
all load steps. By contrast, the error estimator provides reasonable estimates
when the enriched space Ṽ is used for the approximation of the dual solution,
as shown in Fig. 8. The effectivity indices remain mostly close to unity, except
maybe in the region of dislocation nucleation where strong nonlinear behavior
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Fig. 6. QCM mesh (left) and enriched mesh (right) at load step 9. The QCM mesh
has 432 atoms while the enriched mesh contains 10887.
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Fig. 7. The (relative) exact error and the error estimate on the QCM mesh without
enrichment.

occurs. Indeed, recall that the QC solution dislocates one load step early.
In other words, the primal solution u0 contains large errors that certainly
pollute the approximation of the dual solution at that particular load step.
We actually show in Fig. 9 the dual solutions p and p0 computed using the
base model and QCM, respectively, and p exhibits many more details than
p0, notably in the region away from the indenter near the slip plane.

4 Adaptivity

We propose here a simple adaptive strategy to control the error in the quantity
of interest within some prescribed tolerance δtol. Our approach is different from
the one used in the QCM code, but was made to fit the data structure available
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Fig. 8. The relative error (left) and the effectivity indices (right) are shown com-
paring the error estimator to the exact error for the enriched QCM mesh.
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Fig. 9. The dual solution of the base model (left) and the QCM (right) at the
beginning of load step 27.

in the code.

4.1 Adaptive strategy. For the purpose of spatial adaptation with respect to
the quantity of interest, it is first necessary to decompose the error estimate
η into local contributions that could be employed for the development of re-
finement indicators. Due to the structure of the code, we have adopted an
approach in which the local contributions are defined per element such that:

η =
Ne
∑

K=1

ηK (40)

This is accomplished in practice as follows: for each element K of the partition,
one computes the nodal contributions ηK

i = r̃i(π̃u0)·p̃i of the quantity η, from
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which one can calculate an elementwise contribution as:

ηK(π̃u0, p̃) =
3

|K|NK
i

∫

ΩK

Nd
∑

i=1

ηK
i φi dx, (41)

where |K| denotes the area of element K, Nd the number of nodes in K, NK
i

the number of elements sharing node i, and φi the restrictions to element K of
the linear base functions as defined in (9). This decomposition is simple and
easily implemented in the QCM code, but is not unique.

The adaptive algorithm, the so-called Goals algorithm [13], proceeds as follows:

(1) Initialize the load step to s = 0. Input user-tolerance δtol.
(2) Go to the next load step, s = s + 1.
(3) Solve the primal and dual problems as described in Sections 2.2 and 3.2,

respectively.
(4) Compute the error estimate as discussed in Section 3.3.
(5) If |η| < δtol|Q(u0)|, go to step (2). Otherwise, mark those elements that

satisfy |ηK(π̃u0, p̃)| > γ max
K

|ηK(π̃u0, p̃)|, where γ is a user-supplied

number between 0 and 1.
(6) Refine flagged elements and go to step (3).

Note that our adaptive algorithm slightly differs from QCM in the sense that,
in the QCM, the elements are flagged for refinement if the elemental contribu-
tions are below some user-specified number γQC and that the adaptive process
within each load step eventually ends when no more elements are flagged for
refinement.

4.2 Numerical examples. In the following examples, we choose δtol = 0.05
(the solution is controlled so that the relative error is always less than five
percent) and γ = 0.25. In Fig. 10, we show the adapted meshes obtained
using the QCM and the Goals algorithm once dislocations have nucleated. As
can be seen, the Goals mesh includes many more atoms near the indenter.
Fig. 11 shows the evolution of the number of atoms (degrees of freedom) for
both methods. It is interesting to see that the Goals algorithm adds many
repatoms at the beginning of the simulation while QCM essentially refines at
the dislocation nucleation.

Force-displacement curves are shown in Fig. 12. We observe that the Goals
algorithm is able to control the error within the specified tolerance and pro-
vides a solution that predicts the dislocation nucleation just as the base model
solution does, but at a much lower computational cost. Relative errors and
effectivity indices are plotted in Fig. 13, demonstrating the effectiveness of
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Fig. 10. QCM (left) and Goals (right) mesh at load step 27. The number of atoms
in the QCM and Goals meshes are 1629 and 3452, respectively.
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Fig. 11. Comparison of the evolution of QCM mesh and Goals mesh.

our error estimator. Finally, we show in Fig. 14 the dual solutions obtained
using the base model, the QCM, and the Goals algorithm. Again, this result
shows that the dual solutions for the base model and the Goals algorithm are
virtually indistinguishable while the solution of the QCM is very different.

5 Conclusions

In the present work, we have extended the methodology of goal-oriented error
estimation and adaptivity to molecular statics using approximate solutions
produced by the quasicontinuum method (QCM). Estimates of the error in
the QC approximations with respect to quantities of interest are derived and
are used as a basis for the development of a Goals algorithm. The theoretical
results were applied to a sample nanoindentation problem and it was found
that the Goals methodology provides reliable error estimates and successfully
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Fig. 12. Force-displacement curves computed from the base model solution, the QC
solution, and the Goals solution.
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Fig. 13. Relative error (left) and effectivity indices (right).

controls the prediction of the force acting on the indenter. The results were
consistently verified using a highly resolved solution of the nanoindentation
problem.
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Fig. 14. Comparison of the dual solution for the base model (top left), the Goals
algorithm (top right), and the QCM (bottom) at the end of load step 27.
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